China Hot selling High precision planetary Helical gearbox reducer PXF90 gear box

Applicable Industries: Machinery Repair Shops, Printing Shops, Energy & Mining
Gearing Arrangement: Planetary
Output Torque: 32-125
Input Speed: 6000
Output Speed: 3500
type: precision
industry: cnc , CZPT motor
Maximum torque: 1.5 times the rated torque
Ratio: 1:3,4,5,7,10
Max radial load: 3250N
Max axial load: 1300N
Torsional Stiffness: Nm/arcmin :12
Maximum input speed: 8000rpm
Rated input speed: 3500rpm
The noise: ≤60
Packaging Details: 47x30x37cm

Double bracing cage planetary shelf structure,high reliable,can suit reversible rotation frequentlyHelical gear transmission,more reliable,higher torque Low return backlash, high precisionSpecial Rotating frame structure , can carry bigger ,Radial&Axial load size:60-180 ratio:3-100 backlash rank: P1:1-3arcmin P2:3-5 arcmin P3: 5-8 arcmmin

PXF90

Ratio L1 Torque Ratio L2 Torque
3 105 15 105
4.5.6. 130 20,35,40,50 110
7 100 70 100
8 90 100 75
9,10 75
IP Grade IP 65
Working Temp 90℃ to -10℃

Max torque: Nm 1.5 times rated torque
Emergency stop torque(Nm ): 2.5times rated torque
max radial load : 3250N
Max axial load: 1300N
Torsional Stiffness Nm/arcmin :12
Max input speed :8000 rpm
Normal input speed :4000 rpm
noise :≤60
Life time :20000h
Efficiency of full load :L1≥95% L2≥90%
Standard backlash P1 L1 ≤5 arcmin P2 L1 ≤8 arcmin
P1 L2 ≤ High Precision Planetary Gearbox Gearbox For Servo Motor Planetary Gear Reducer VRSF-5C-K-400-GCII Planetary Gear Reducer 7 arcmin P2 L2 ≤10 arcmin

Moment
of
Inertia (Kg.cm2)

L1 3 0.61 L2 15 0.45
4 0.48 20 0.45
5 0.47 35 0.45
6 0.47 40 0.45
7 0.45 50 0.4
8 0.45 70 0.4
9 0.42 100 0.4
10 0.40

Certification
About our company HangZhou Just Motion Control Electromechanics Co.,Ltd established in 2007, we have 10 years experiences in the motion cotrol area.
Our main products are stepper motor drives, stepper motors, AC servo motor systems, integrated stepper servo motors, integated stepper AC servo motors,DC brushes and brushless motors and drive systems.we also provide complimentary mechaical products.suchas motor couplings, gearboxes, and linear motions.
Our products are widely used and applied in the following industries: CNC kits, 3D printer, sewing machine, laser, semi-conductor, textile, packaging, woodworking, advertising, clothing, marble and ceramic, robotics and military.
Our customers come froms all around the world:European, America, Canada, Middle East,Asia and so on!
Sincerely hope we can have channce to cooperate! High Power R1SF300 12000rmp 33Kg Electric Car Conversion Kit Reducer Gearbox for 2 to 4 ton Vehicle

Our Exhibition Every year, we will have booth in many international exhibitions to show our products and meet our customers.
Welcome to see you in next 1 !

FAQQ1. What are your products can be use to ?
A: Our products can be use in CNC routers, CNC milling machine, 3D Printer, laser machine, engraving machine, sewing machine, packaging machine,filling machine, cutting machine, carving machine, labeling machine and so on.

Q2. What kind of Payment methods do you accept ?
A: We can accept Paypal ,Western Union ,TT

Q3: What kind of shipping methods do you use ?
A:1) For samples or small batch , air shipping is recommended . (DHL,Fedex,TNT UPS ,EMS or Aramex) ,We will provide the tracking No. Once we get it after we ship out the products.
2)For mass production or big batch, CZPT shipping/sea shipment is recommended .

Q4: What is the lead time of my products?
A: Lead time : For standard samples , 2-5 days will be OK .
For mass production , the lead time depend on the quantities you need .
Note:
Sometimes your local customs may charge tax from you. then you should pay it to get the package, sometimes not have.The exact delivery time is delayed on the post office and customs, we can’t control it. If the product is delayed, pls pay more patience to wait and ask us to extend delivery dates for you.

Q5:What is your warranty time ?
A:Warranty time : 12 months. And we provide life-long technical service and after-sale service.

Q6:Can i get a free sample?
A:Sorry, we don’ high precision NMRV030 series worm and aluminium bevel gearbox price input speed single phase worm gearbox nema52 t provide the free sample.

The Difference Between Planetary Gears and Spur Gears

A spur gear is a type of mechanical drive that turns an external shaft. The angular velocity is proportional to the rpm and can be easily calculated from the gear ratio. However, to properly calculate angular velocity, it is necessary to know the number of teeth. Fortunately, there are several different types of spur gears. Here’s an overview of their main features. This article also discusses planetary gears, which are smaller, more robust, and more power-dense.
Planetary gears are a type of spur gear

One of the most significant differences between planetary gears and spurgears is the way that the two share the load. Planetary gears are much more efficient than spurgears, enabling high torque transfer in a small space. This is because planetary gears have multiple teeth instead of just one. They are also suitable for intermittent and constant operation. This article will cover some of the main benefits of planetary gears and their differences from spurgears.
While spur gears are more simple than planetary gears, they do have some key differences. In addition to being more basic, they do not require any special cuts or angles. Moreover, the tooth shape of spur gears is much more complex than those of planetary gears. The design determines where the teeth make contact and how much power is available. However, a planetary gear system will be more efficient if the teeth are lubricated internally.
In a planetary gear, there are three shafts: a sun gear, a planet carrier, and an external ring gear. A planetary gear is designed to allow the motion of one shaft to be arrested, while the other two work simultaneously. In addition to two-shaft operation, planetary gears can also be used in three-shaft operations, which are called temporary three-shaft operations. Temporary three-shaft operations are possible through frictional coupling.
Among the many benefits of planetary gears is their adaptability. As the load is shared between several planet gears, it is easier to switch gear ratios, so you do not need to purchase a new gearbox for every new application. Another major benefit of planetary gears is that they are highly resistant to high shock loads and demanding conditions. This means that they are used in many industries.
Gear

They are more robust

An epicyclic gear train is a type of transmission that uses concentric axes for input and output. This type of transmission is often used in vehicles with automatic transmissions, such as a Lamborghini Gallardo. It is also used in hybrid cars. These types of transmissions are also more robust than conventional planetary gears. However, they require more assembly time than a conventional parallel shaft gear.
An epicyclic gearing system has three basic components: an input, an output, and a carrier. The number of teeth in each gear determines the ratio of input rotation to output rotation. In some cases, an epicyclic gear system can be made with two planets. A third planet, known as the carrier, meshes with the second planet and the sun gear to provide reversibility. A ring gear is made of several components, and a planetary gear may contain many gears.
An epicyclic gear train can be built so that the planet gear rolls inside the pitch circle of an outer fixed gear ring, or “annular gear.” In such a case, the curve of the planet’s pitch circle is called a hypocycloid. When epicycle gear trains are used in combination with a sun gear, the planetary gear train is made up of both types. The sun gear is usually fixed, while the ring gear is driven.
Planetary gearing, also known as epicyclic gear, is more durable than other types of transmissions. Because planets are evenly distributed around the sun, they have an even distribution of gears. Because they are more robust, they can handle higher torques, reductions, and overhung loads. They are also more energy-dense and robust. In addition, planetary gearing is often able to be converted to various ratios.
Gear

They are more power dense

The planet gear and ring gear of a compound planetary transmission are epicyclic stages. One part of the planet gear meshes with the sun gear, while the other part of the gear drives the ring gear. Coast tooth flanks are used only when the gear drive works in reversed load direction. Asymmetry factor optimization equalizes the contact stress safety factors of a planetary gear. The permissible contact stress, sHPd, and the maximum operating contact stress (sHPc) are equalized by asymmetry factor optimization.
In addition, epicyclic gears are generally smaller and require fewer space than helical ones. They are commonly used as differential gears in speed frames and in looms, where they act as a Roper positive let off. They differ in the amount of overdrive and undergearing ratio they possess. The overdrive ratio varies from fifteen percent to forty percent. In contrast, the undergearing ratio ranges from 0.87:1 to 69%.
The TV7-117S turboprop engine gearbox is the first known application of epicyclic gears with asymmetric teeth. This gearbox was developed by the CZPT Corporation for the Ilyushin Il-114 turboprop plane. The TV7-117S’s gearbox arrangement consists of a first planetary-differential stage with three planet gears and a second solar-type coaxial stage with five planet gears. This arrangement gives epicyclic gears the highest power density.
Planetary gearing is more robust and power-dense than other types of gearing. They can withstand higher torques, reductions, and overhung loads. Their unique self-aligning properties also make them highly versatile in rugged applications. It is also more compact and lightweight. In addition to this, epicyclic gears are easier to manufacture than planetary gears. And as a bonus, they are much less expensive.

They are smaller

Epicyclic gears are small mechanical devices that have a central “sun” gear and one or more outer intermediate gears. These gears are held in a carrier or ring gear and have multiple mesh considerations. The system can be sized and speeded by dividing the required ratio by the number of teeth per gear. This process is known as gearing and is used in many types of gearing systems.
Planetary gears are also known as epicyclic gearing. They have input and output shafts that are coaxially arranged. Each planet contains a gear wheel that meshes with the sun gear. These gears are small and easy to manufacture. Another advantage of epicyclic gears is their robust design. They are easily converted into different ratios. They are also highly efficient. In addition, planetary gear trains can be designed to operate in multiple directions.
Another advantage of epicyclic gearing is their reduced size. They are often used for small-scale applications. The lower cost is associated with the reduced manufacturing time. Epicyclic gears should not be made on N/C milling machines. The epicyclic carrier should be cast and tooled on a single-purpose machine, which has several cutters cutting through material. The epicyclic carrier is smaller than the epicyclic gear.
Epicyclic gearing systems consist of three basic components: an input, an output, and a stationary component. The number of teeth in each gear determines the ratio of input rotation to output rotation. Typically, these gear sets are made of three separate pieces: the input gear, the output gear, and the stationary component. Depending on the size of the input and output gear, the ratio between the two components is greater than half.
Gear

They have higher gear ratios

The differences between epicyclic gears and regular, non-epicyclic gears are significant for many different applications. In particular, epicyclic gears have higher gear ratios. The reason behind this is that epicyclic gears require multiple mesh considerations. The epicyclic gears are designed to calculate the number of load application cycles per unit time. The sun gear, for example, is +1300 RPM. The planet gear, on the other hand, is +1700 RPM. The ring gear is also +1400 RPM, as determined by the number of teeth in each gear.
Torque is the twisting force of a gear, and the bigger the gear, the higher the torque. However, since the torque is also proportional to the size of the gear, bigger radii result in lower torque. In addition, smaller radii do not move cars faster, so the higher gear ratios do not move at highway speeds. The tradeoff between speed and torque is the gear ratio.
Planetary gears use multiple mechanisms to increase the gear ratio. Those using epicyclic gears have multiple gear sets, including a sun, a ring, and two planets. Moreover, the planetary gears are based on helical, bevel, and spur gears. In general, the higher gear ratios of epicyclic gears are superior to those of planetary gears.
Another example of planetary gears is the compound planet. This gear design has two different-sized gears on either end of a common casting. The large end engages the sun while the smaller end engages the annulus. The compound planets are sometimes necessary to achieve smaller steps in gear ratio. As with any gear, the correct alignment of planet pins is essential for proper operation. If the planets are not aligned properly, it may result in rough running or premature breakdown.

China Hot selling High precision planetary Helical gearbox reducer PXF90     gear boxChina Hot selling High precision planetary Helical gearbox reducer PXF90     gear box